
9-Borylanthracene 12 was prepared from 1,8-bis(diisopropyl-
phosphino)-9-bromoanthracene (5) and the X-ray structure of 12
shows a tetrahedral boron atom coordinated by only one of the
two (i-Pr)2P groups. However, anthracene protons were observed
symmetrically in 1H NMR even at –80 oC, clearly indicating that
the intramolecular bond-switching process is taking place very
rapidly in solution.

Recently, we reported synthesis of a novel ligand (1) bearing
the OMe group at 1,8-positions and a Br atom at 9-position, and
the ligand was utilized to give hypervalent pentacoordinate boron
compounds (2).1 On the other hand, anthracene bearing the
diphenylphosphino group at 1,8-positions (3) has been synthe-
sized by Haenel et al.2 Although some Pd or Ni compounds (4)
could be prepared by the reaction of 3 with Pd(II) or Ni(II), intro-
duction of various main group elements to 9-position of the
anthracene have never been reported.  Here we report on synthe-
sis of a new diphosphine ligand with a Br atom at 9-position (5).
The bromide was easily lithiated with n-BuLi and was utilized to
introduce a boron atom to the 9-position.

Synthesis of 5 is illustrated in Scheme 1.  Bromination3 and
reduction4 of commercially available quinone 6 afforded dibro-
moanthrone 7.  Deprotonation of 7 followed by methylation gave
1,8-dibromo-9-methoxyanthracene 8.5 After dilithiation of 8 by
2 equiv of n-BuLi, 2 equiv of (i-Pr)2PCl was added to the reac-
tion mixture to give 9.6 LDBB (lithium di-tert-butylbiphenylide)
could remove the methoxy group from 9-position of 9 selective-
ly.  Trapping of the generated lithium derivative 10 with
BrCF2CF2Br gave the novel anthracene ligand 5 bearing two (i-
Pr)2P groups in 51% yield.7 It is interesting to note that the
LDBB reduction of the OMe group is a novel procedure but the

similar reduction from the corresponding Ph2P derivative (11) by
LDBB was not successful probably due to the ortho-lithiation at
the Ph2P group.

After quantitative regeneration of lithium derivative 10 by
the reaction of 5 with n-BuLi in THF, 10 was reacted with B-
chlorocatecholborane to give a boryl derivative 12 (Scheme 2).8

The boryl derivative 12 was air and moisture stable, and the sin-
gle crystals of 12 suitable for X-ray analysis were obtained by
recrystallization from CH2Cl2.

ORTEP drawing of 12 is shown in Figure 1.9 Shorter P–B
bond length is 2.14(1) Å and the longer P-B length is 3.17(1) Å.
Although the former is longer than the sum (1.98 Å)10 of cova-
lent radius of boron and phosphorus, the latter is shorter than that
of the van der Waals radii (3.98 Å).10 The structure of the boron
atom should be regarded to be tetracoodinated.  Thus, only one of
the two (i-Pr)2P groups is coordinating toward the boron atom in
the solid state.

However, 1H NMR of 12 showed a symmetrical anthracene
pattern {two kinds of doublets (δ 7.72, 8.10; 4H), and a triplet (δ
7.48; 2H)} at room temperature.  In addition, only one signal was
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observed in the 31P NMR.  The peaks kept its sharpness and sym-
metrical pattern even at –80 °C.  These NMR data indicate that
the very rapid bond switching process is taking place in solution
as illustrated in Scheme 3.

Since the energy barrier of the P–B bond switching process in
12 was too small to measure by coalescence method, the energy
difference between the unsymmetrical tetracoordinate compound
12A and the pentacoordinate boron 12B, which should be the
transition state of the bond switching process, must be very small.
The small activation energy in 12 indicates that our newly pre-
pared rigid anthracene ligand system stabilizes the 5-coordinate
boron transition state.  The result is in contrast to the relatively
high energy barrier (∆G‡ = 13.4 kcal/mol) of the similar SN2 type
reaction of 13 with 2,6-bis(dimethylaminomethyl)phenyl ligand.11
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